DNA primase activity associated with DNA polymerase alpha from Xenopus laevis ovaries.

نویسندگان

  • M Shioda
  • E M Nelson
  • M L Bayne
  • R M Benbow
چکیده

One of the two forms of DNA polymerase alpha from ovaries of the frog Xenopus laevis catalyzed ribonucleoside triphosphate-dependent DNA synthesis on single-stranded circular fd phage DNA templates. DNA synthesis was dependent on ATP and added template. CTP, GTP, and UTP stimulated DNA synthesis but were not required and could not substitute for ATP. DNA synthesis was not inhibited by alpha-amanitin. Neither poly(dT) nor double-stranded DNA served as template. Analysis of [32P]-dTMP-labeled product by neutral and alkaline agarose gel electrophoresis showed that 0.1- to 1-kilobase DNA fragments (average size of approximately equal to 0.25 kilobase) were synthesized. The fragments were not covalently linked to the template. Either [alpha-32P]NMP, [gamma-32P]ATP, or [gamma-32P]GTP were incorporated also into the product. Analysis of the product after hydrolysis by KOH, alkaline phosphatase, or bacteriophage T4 3' leads to 5' exonuclease showed the presence of a small oligoribonucleotide primer at the 5' end of the newly synthesized DNA. NTP-dependent DNA-synthesizing activity copurified on six columns and cosedimented during glycerol gradient centrifugation with one form of DNA polymerase alpha activity but not with the other form. These results suggest that DNA primase activity is associated with one of the two forms of X. laevis DNA polymerase alpha.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circular single stranded phage M13-DNA as a template for DNA synthesis in protein extracts from Xenopus laevis eggs: evidence for a eukaryotic DNA priming activity.

Unfractionated protein extracts from activated Xenopus laevis eggs contain all functions required for the chain elongation reactions in replicative DNA synthesis (A.Richter, B. Otto and R.Knippers, 1981, Nucl.Ac.Res. 9, 3793-3807). In order to further explore the DNA synthesizing capacity of this in vitro system and to obtain information on the DNA priming activity in these extracts single stra...

متن کامل

Participation of deoxyribonucleic acid polymerase alpha in amplification of ribosomal deoxyribonucleic acid in Xenopus laevis.

Aphidicolin, a known inhibitor of eucaryotic deoxyribonucleic acid (DNA) polymerase alpha, efficiently inhibited amplification of ribosomal DNA during oogenesis in Xenopus laevis. DNA polymerase alpha, but not DNA polymerase gamma, as isolated from ovaries, was sensitive to aphidicolin. DNA polymerase beta was not detectable in Xenopus ovary extracts. Therefore, DNA polymerase alpha plays a maj...

متن کامل

Xenopus laevis Ctc1-Stn1-Ten1 (xCST) Protein Complex Is Involved in Priming DNA Synthesis on Single-stranded DNA Template in Xenopus Egg Extract*

The Ctc1-Stn1-Ten1 (CST) complex is an RPA (replication protein A)-like protein complex that binds to single-stranded (ss) DNA. It localizes at telomeres and is involved in telomere end protection in mammals and plants. It is also known to stimulate DNA polymerase α-primase in vitro. However, it is not known how CST accomplishes these functions in vivo. Here, we report the identification and ch...

متن کامل

Domain architecture and biochemical characterization of vertebrate Mcm10.

Mcm10 plays a key role in initiation and elongation of eukaryotic chromosomal DNA replication. As a first step to better understand the structure and function of vertebrate Mcm10, we have determined the structural architecture of Xenopus laevis Mcm10 (xMcm10) and characterized each domain biochemically. Limited proteolytic digestion of the full-length protein revealed N-terminal-, internal (ID)...

متن کامل

Purification of a DNA primase activity from the yeast Saccharomyces cerevisiae. Primase can be separated from DNA polymerase I.

A primase activity which permits DNA synthesis by yeast DNA polymerase I on a single-stranded circular phi X174 or M13 DNA or on poly(dT)n has been extensively purified by fractionation of a yeast enzyme extract which supports in vitro replication of the yeast 2-microns plasmid DNA (Kojo, H., Greenberg, B. D., and Sugino, A. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 7261-7265). Most of this DNA ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 79 23  شماره 

صفحات  -

تاریخ انتشار 1982